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T H E R M O G R A V I T A T I O N A L  C O N V E C T I O N  I N  A 
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The processes of freezing and thawing of a liquid in the presence of thermogravitational convection in a 

square cell with adiabatic vertical and isothermal horizontal walls are considered. The development of 

convective flow in time depends on the initial conditions, and therefore various scenarios of transition to a 

stationary solution are possible. The presence of phase transitions in the liquid makes it possible to freeze 

the transient structure of convective vortices. As a result, depending on the initial conditions, several 

stationary solutions that differ in both the structure of the convective motion and the magnitude of the heat 

transfer rate of  the medium can exist. 

We consider thermogravitational convection in a square cell with adiabatic vertical and isothermal horizontal 

walls. We will assume that the liquid freezes at T = Ts. The system of equations is written in the form 

d i v v = O ,  p +(vV)  v = - V p + / z A v - g f l p ( T  - TO), 

p 7" - -2a t ,  h = c r ,  

h = cT +to ,  T > Ts , h = fx + cTs , T = T s ,  (1) 

i.e., thermogravitational convection is considered using the Boussinesq approximation, and the dependence of 

enthalpy on temperature is taken to be a piecewise linear function. 

We represent system of equations (1) in dimensionless form, for which we introduce the dimensionless 

coordinates X = x / l  and G = y / l ,  where l is the side of the square, and the dimensionless time r = t v / l  2. Here, 

the characteristic time is taken to be the time of viscous damping to = 12/v. In this case system of equations (1) 
takes the following dimensionless form: 
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T r _ _  

T - TO Ja = cp(T1 TO) (2) 
T 1 - T  O ' 

Thus, the behavior of the system being considered is determined by three dimensionless criterial numbers. 

We recall the main results of the theory of natural convection (a detailed review of results and methods of 

calculation is given in [ 1 ]. There is a certain critical value of the Rayleigh number below which the state of rest of 

the system is stable. Subsequently, with increase in the Rayleigh number, we come to bifurcations of the stationary 

solution. The stationary solution is observed at values of the dimensionless time ~-- 1; in problems with phase 

transitions the stationary solution is obtained at large dimensionless times with a decrease in the Jacob number. 

System of equations (2) was solved numerically in a square cell on a grid of 38 x 38 nodal points. The 

system of hydrodynamic equations was solved by the SIMPLE method developed by Patankar and Spalding [2 ]. 

The heat influx equation was solved by the enthalpy method given in [3 ]. The numerical model was tested by 

comparing the results of calculations with the exact one-dimensional solution of the Stefan problem and two- 

dimensional solutions obtained by other authors on the basis of other numerical models. 

To gain an insight into the various regimes of the melting of the liquid, it is worthwhile to consider first 

the evolution of the solution in the problem of liquid convection without phase transitions. In the calculations the 

dimensionless parameters had the following values: Ra = 5"  104, Pr -- 1, Ja --, oo.  We will consider the evolution of 

the solution from the state of rest of the liquid. In the first problem suppose that the dimensionless temperature at 

the initial moment is equal to T = 1 over the entire computational domain, except for the upper boundary, where 

the dimensionless temperature is equal to T = 0.5. The side walls are adiabatic. Thus, the first problem is charac- 

terized by the following boundary and initial conditions: 

~ = 0 :  U = V = O ,  T = I ,  r > 0 :  Y = 0 ,  0 < X < I ,  T = I ,  

OT 
Y = I ,  0 < X < I ,  T = 0 . 5 ,  X = 0 ,  X = I ,  0 <  Y < I ,  o x - O .  

In this case, the liquid in the central region of the cell moves downward initially, forming two symmetric 

vortices. As the convection develops, one vortex is absorbed by the other, and a vortex is formed that spreads over 

the entire region of the cell and rotates in a clockwise direction. Just this vortex-type flow is the stationary solution 

of the problem. 

In the second case the convective flow evolves from the state of rest at T = 0.5. At the initial instant of time 

the temperature of the lower wall becomes equal to T = 1 and it is then kept constant. In this case a somewhat 

different evolution of the solution is observed. At the initial instant of time two vortices are also formed, but rotating 

in the other direction. In this case the stationary convective motion is represented by one vortex but rotating in the 

opposite direction, i.e., counterclockwise. The solutions obtained show that the symmetry in the convection 

problems is the condition of total reflection of the flow pattern and not reflection with respect to the symmetry axis. 

In this connection it should be noted that an artificial solution of the problem in the half-domain leads to a 

stationary solution consisting of a system of two vortices, whereas the stationary solution of the problem is different 

(one vortex). 
We now consider the process of natural convection complicated by a phase transition. Let the freezing- 

melting of the liquid occur at Ts = 0.5 and the latent heat of melting correspond to the Jacob number Ja = i0. Le~ 

us consider three problems of the evolution of the solution to the stationary one for the temperature of the lower 

wall T = 1 and of the upper wall T = 0. 
In the first case the fluid in the initial state in the cell was in the liquid state at T = 1. As with the problem 

without a phase transition, at first two vortices are formed, with the liquid near the vertical walls moving upward 

and thus freezing up more intensely at the center of the cell. The phase interface is convex downward and its 

curvature prevents one vortex from being absorbed by the other. The stationary solution is obtained in the form 

of two vortices with the phase interface being convex downward (see Fig. la). 

687 



ti 
Y b ' / ' / . ' / . ' / / / / / / / / / / /  

L , /  / /  / / / / / / / / /  " / /  ~ 
[ / / .  ~., Frozen zone / / ~ / ~ / .  

r i l l / l / ,  I . / / / , %  " / / / / j  

o o.'5 x 

C 

F~/., / _ / / / / / / / 7 .  ; / /  / 
[/// ' /Frozen zone / / / / "  
I /  " . ' . ' / ' / /  / / ' / ' / / /  / / /  . 

Y 

g.g 

b 

/ / / / .  Frozen zone / / / ,  , 
; h / / , ;  ' / / , / / " / / A .  
- - .  ~ , f  �9 / ~  " / #  

o ak x 

g 0.~- x 
Fig. 1. Streamlines and frozer/area in the stationary solution of the problem 

of the freezing of liquid in a square (a), its thawing (b), and the stepwise 

freezing of liquid in a square (c). 

In the second case the liquid is initially in the solid state at T = 0. The melting of the liquid at the 

temperature of the lower boundary T(Y = 0) = 1 occurs as follows. As the melting region appears, convective flow 

is formed that also consists of a system of two vortices, but the direction of liquid rotation in tem is opposite to the 

previous case, i.e., the liquid at the center of the cell moves upward. In this case the stationary solution corresponds 

yo Fig. lb. 

The third solution evolves from the state of rest of the liquid at T = 1, but initially on the upper side of 

the square cell the temperature T ( Y  = 1) = 0.5 is maintained. As soon as one vortex is formed, we decrease the 

temperature of the upper boundary to T(Y = 1) = 0. In this case the liquid freezes with the one-vortex structure of 

convective flow, and the stationary solution has the form given in Fig. lc. 

A stationary solution with the opposite direction of the rotation of the vortex can be obtained if at first the 

temperature in the cell is prescribed to be equal to T = 0.5 and that of the lower wall to T ( Y  = 0) = 1, i.e., if first 

the opposite vortex is formed and then the system is allowed to freeze. 

The Nusselt number was determined in the three types of stationary solution obtained. It was found that 

for these three solutions the Nusselt number was equal to 1.546, 1.575, and 1.581, respectively. Thus, the initial 

conditions influence not only the structure of the vortex flow and the shape of the phase interface but also the 

integral parameter, i.e., the heat transfer of the cell. 

N O T A T I O N  

v, velocity vector; p, pressure; c, heat capacity; h, enthalpy; T', temperature; g, acceleration of gravity; f, 

concentration of nonfrozen liquid in the two-phase region; P, dimensionless pressure; U, dimensionless projection 
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of the velocity onto the O X  axis; 1I, dimensionless projection of the velocity onto the O Y  axis; T, dimensionless 
temperature; t, time; l, characteristic scale of the problem; Ra, Rayleign number; Pr, Prandtl number; Ja, Jacob 
number; x, latent heat of melting; O, kinematic viscosity; p, density; v, thermal conductivity; r, dimensionless time; 
x, X, y, Y, dimensional and dimensionless coordinates; Nu, Nusselt number. 
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